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Abstract. In this work we present a predictive analytical model that en-
compasses the performance and scaling characteristics of a non-determi-
nistic particle transport application, MCNP. Previous studies on the scal-
ability of parallel Monte Carlo eigenvalue calculations have been rather
general in nature [1]. It can be used for the simulation of neutron, pho-
ton, electron, or coupled transport, and has found uses in many problem
areas. The performance model is validated against measurements on an
AlphaServer ES40 system showing high accuracy across many processor
/ problem combinations. It is parametric with both application charac-
teristics (e.g. problem size), and system characteristics (e.g. communica-
tion latency, bandwidth, achieved processing rate) serving as input. The
model is used to provide insight into the achievable performance that
should be possible on systems containing thousands of processors and to
quantify the impact that possible improvements in sub-system perfor-
mance may have. In addition, the impact on performance of modifying
the communication structure of the code is also quantified.

1 Introduction

MCNP is a general purpose Monte-Carlo N-Particle code that represents part
of the Accelerated Strategic Computing Initiative (ASCI) workload. It can be
used for the simulation of neutron, photon, electron, or coupled transport [2].
Particle transport simulation has found uses in many problem areas including
nuclear reactors, radiation shielding, and medical physics. There is great interest
in the use of non-deterministic particle simulation on large-scale systems - both
those currently in existence as well as future advanced systems being proposed.

A model of MCNP is required to assess the performance that can be obtained
on current and future large-scale systems. In particular, a model can provide in-
formation to users on what size problem can be processed given a time allocation
or what size problem needs to be processed in order to achieve a desired qual-
ity of results. The model can also be used in the procurement, and consequent
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installation, of future systems by providing information on what performance
should be achievable prior to actual system availability (see for example [3]).
The model can also be used to identify bottlenecks in the code and to make
recommendations for its future development.

In this work we develop a detailed analytical performance model of MCNP.
The model consists of two fundamental parts: an application model and a system
model. The application model is based on a static analysis of the key portions
of the code but is parameterized in terms of the data specific to the problem
being simulated. The application model is combined with the system model
in order to evaluate performance predictions for a specific system. The system
model encapsulates key system characteristics such as communication (e.g. la-
tency and bandwidth), and computational performance (e.g. processor speed).
The two parts of the model are kept separate so the model can be re-used with-
out alteration to explore a multitude of performance scenarios. For instance, one
may evaluate a different problem by setting the appropriate input parameters to
the application model, or evaluate a new machine by changing the input values
to the system model. A similar modeling approach has been used to model other
large-scale applications including deterministic transport on structured and un-
structured meshes [4–6], and adaptive mesh refinement [7, 8].

Motivation and previous work. Criticality safety is a vital part of the stor-
age, transportation, and processing of fissionable materials. Criticality may be
defined as that state of a nuclear chain-reacting medium when the nuclear fis-
sion chain reaction just becomes self-sustaining (critical). MCNP includes the
capability to calculate eigenvalues for critical systems and forms the particular
input studied in this work. The example geometry consists of an insulated barrel
containing a number of hollow rods of fissionable material. Horizontal and ver-
tical cross-sections of the geometry are shown in Figure 1. The shading is used
to indicate the different material properties of each rod and also of the insulated
barrel. The hollow portion of the rods are indicated as white. The goal of the
simulation is to determine if the arrangement of rods is safe, i.e. non-critical.

2 MCNP

MCNP can trace its roots back to the invention of the Monte Carlo method at Los
Alamos during World War II. The Monte Carlo method is generally attributed
to Fermi, Metropolis, von Neumann, Richtmyer and Ulam [9]. It was one of the
first application programs run on early computers in the 1950’s. MCNP is the
successor to their work and represents over 450 person-years of development.
Version 4C of MCNP was used in this analysis.

Monte Carlo methods in general and MCNP specifically do not solve an ex-
plicit equation, but rather obtain answers by simulating the interactions between
individual particles and a predefined geometry. The accuracy of the calculation
increases in proportion to the number of particles used in the simulation. In
general, the error in the calculation reduces as the square root of the number of
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Fig. 1. Horizontal (a) and vertical (b) cross-sections of example geometry.

particles. This is in contrast to deterministic transport methods, the most com-
mon of which is the discrete ordinates method, that actually solve the transport
equation directly for the average particle behavior [10].

The input geometry for MCNP consists of a collection of cells defined as
combinations of primitive shapes such as planes, cylinders and spheres. The
material properties are retrieved from an external library . The behavior of each
simulated particle and its interaction with the materials travelled through, as
defined by the geometry, are recorded to produce a particle history. During this
process, statistical information about certain events is gathered in histograms
or tallies. The interaction of particle and geometry can result in several events
such as neutron/photon scatter, capture, and leakage.

The current parallelization strategy of MCNP requires the geometry to be
copied to all processors and thus the complexity of the geometry is constrained by
the memory available in a single processing node [11]. Parallelism can be utilized
to either solve the same problem faster by sub-dividing the simulated particles
across all processors (strong scaling), or to give a more accurate simulation
by simulating more particles in proportion to the number of processors (weak
scaling). During each cycle of MCNP, each processor simulates a designated set
of particles. At the end of each cycle, a single processor merges the results from
all other processors during a rendezvous. This communication pattern requires
several steps and a fairly high degree of coordination. Note that the achievable
performance of MCNP is both input sensitive (the cost to simulate a particle
depends on the complexity of the geometry and materials used) and output
sensitive (the complexity of the output depends on the requested tallies).

3 Performance Model

MCNP is representative of a general parallel application paradigm known as
master-slave. In this paradigm, a master process is responsible for dividing the



Fig. 2. Communication pattern for a single cycle of MCNP.

work to be done across a number of slave processes. Work assignments and
state information are distributed from master to slaves during a “scatter” phase
at the start of each cycle. Once the slaves receive their assignments they may
begin their local computation. Once the slaves have completed their work, they
report their results to the master during a “gather” phase. The master then
aggregates the results from all the slaves and a new cycle begins. The “scatter”
and “gather” phases may actually consist of a sequence of messages. For MCNP
the scatter phase consists of 2 communications, and the gather phase consists of
5 communications (Figure 2).

MCNP is particularly well-suited to the master-slave paradigm due to the in-
dependent nature of particle simulation . During the work phase of MCNP there
is no communication between slaves (i.e. any particle is simulated independently
of any other particle). Unfortunately, this apparent strength reveals a hidden
weakness of MCNP and the master-slave approach in general. First, all commu-
nication must go through the master and second, the entire geometry must be
replicated. The amount of data transmitted from the master to each slave in the
scatter phase, and from each slave to the master in the gather phase results in a
scaling limitation. The performance of MCNP scales well until communication
costs dominate the execution time. The first limitation could be potentially
avoided by altering the manner in which data is reported to the master. The
second could be overcome by allowing communication between slaves, to relay
geometry or particle information.

3.1 Application Model

The application model includes only those portions of the parallel activity that
significantly contribute to the overall execution time. The main stages of a cycle
of MCNP corresponding to those depicted in Figure 2 are listed in Table 1.
The table summarizes the event source (either master or slave), its type (either
collective broadcast, point-to-point communication, or computation), and also
the weight associated with the event for each stage of the cycle. The weight
is in bytes for all communication events (message sizes), and in terms of the
number of particle histories for the computation events. The sizes of some of the



Stage Source Action Size (bytes) Description

1 M bcast P ∗ 8 particle range to be computed by slaves
2 M bcast 229240 update to current history
3 S work Thist ∗ dNph/(P − 1)e Thist times the number of histories
4 S pt2pt 5512 task common
5 S pt2pt 320 tally data
6 S pt2pt 204920 task array 1
7 S pt2pt 48 ∗ dNph/(P − 1)e task array 2
8 S pt2pt 32 timing data

Table 1. Summary of parallel activity for one cycle of MCNP. M=Master, S=Slave(s).

messages are dependent upon the actual problem being solved. These sizes must
be measured prior to the use of the model.

The first task array message (stage 6 in Table 1) is constant for each input
geometry and the requested tallies. The tally data message (stage 5) can be
calculated simply as the word size (8) times 2 plus the number of requested
tallies (38 for this problem). The constant 48 involved in the task array 2 message
(stage 7) is obtained by run-time measurement. This is related to the average
number of collisions experienced by each particle.

The execution time for a single cycle of MCNP can be modeled as:

Ttotal = Tscatter + Tslave + Tgather (1)

where the cycle time, Ttotal, is a summation of the scatter, work, and gather
phases - Tscatter, Tslave, and Tgather, respectively. The form of this model is
additive since the gather and scatter stages are in general synchronized by the
bottleneck caused by the master, and the serialization of the communication
from the slaves to the master. Each cycle begins with a scatter phase:

Tscatter = Tbcast(P ∗ 8, P ) + Tbcast(229420, P ) (2)

where the time to perform the collective broadcast operation, Tbcast(S, P ), is the
time taken to broadcast S bytes across P processors on the target system. The
scatter phase corresponds to the first two stages in Table 1.

The computation phase, performed on each slave, can be modeled as:

Tslave(P,Nph, Thist) =
⌈

Nph

(P − 1)

⌉
∗ Thist (3)

where Nph is the number of particle histories per cycle which are divided amongst
the P−1 slave processors. In general, it is more accurate to take the computation
time for the slowest slave. However, since each slave is responsible for an equal
number of particles, we assume that all slaves will take the same time. The time
to perform a single particle history, Thist, can be measured on a single processor



Lc(S), Bc(S) Tpack(S) Thist
5.05µs, 0.0MB/s S < 64,

5.47µs, 78MB/s 64 ≤ S < 512,

10.3µs, 294MB/s S ≥ 512


0.12ns S < 32K,

0.16ns 32K ≤ S ≤ 4M,

0.67ns S > 4M

798µs

Table 2. Summary of system model parameters (S in bytes).

for the problem being solved. The gather phase can be modeled as:

Tgather(P,Nph) =
P−1∑
i=1

(
Tpt2pt(5512, i, 0)+Tpt2pt(320, i, 0)+Tpt2pt(204920, i, 0)

+ Tpt2pt(48 ∗
⌈

Nph

(P − 1)

⌉
, i, 0) + Tpt2pt(32, i, 0)

)
(4)

where the five point-to-point communications, listed as stages 4-8 in Table 1, are
effectively performed in a serialized way due to the master bottleneck. However,
an examination of the current messaging within MCNP indicates that some of
the data transfered between all slaves and the master (specifically stages 4, 5,
possibly part of 6, and 8 in Table 1) can be at least partially implemented as
collective reductions. If we assume that all of stages 4, 5, and 8 as well as half
of stage 6 can be reduced, equation 4 can be re-written as:

Tgather(P,Nph) =
P−1∑
i=1

(
Tpt2pt(102460, i, 0) + Tpt2pt(48 ∗

⌈
Nph

(P − 1)

⌉
, i, 0)

)
+

Treduce(5512, P ) + Treduce(320, P ) + Treduce(102460, P ) + Treduce(32, P ) (5)

3.2 System Model

For the application model as formulated in Section 3.1, the required components
of the system model are point-to-point communication times, collective broad-
cast times, the time required to perform a single particle history , and also the
memory performance of a single node (for packing). MCNP actually uses the
UPS messaging library [12] for communication between processors. UPS pro-
vides a generic interface with a retargetable backend. It allows a message of
arbitrary length to be built from many smaller variables using packing functions
in a similar way to that of PVM - a feature that is heavily utilized in MCNP.
In the analysis that follows a 32 node AlphaServer ES40 cluster is used as the
experimental testbed. This machine has four processors per node interconnected
using the Quadrics QsNet high-performance network [13]. This network boasts
high-performance communication with a typical MPI latency of 5µsec and a
throughput of up to 340MB/s in one direction.

Measured MPI latency and bandwidth for inter-node unidirectional commu-
nication (point-to-point) were obtained using in-house benchmarks. The collec-
tive broadcast and reduction operations for P processors can be assumed to take
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Fig. 3. Measured and predicted times for small (a) and large (b) inputs.

log2(P ) times that of a single point-to-point communication. The communication
costs also include packing operations, implemented in UPS. The point-to-point,
broadcast, and reduction communication operations are modeled as:

Tpt2pt(S, src, dest) = Tpack(S) + Lc(S) + S/Bc(S) (6)

Tbcast(S, P ) = Tpack(S) + Tpt2pt(S) ∗ log2(P ) (7)

Treduce(S, P ) = Tpack(S) + Tpt2pt(S) ∗ log2(P ) (8)

where S is the size of the message in Bytes, Tpack(S) is the time to pack a single
byte, Lc(S) and Bc(S) are the latency and bandwidth of a message of size S
bytes. The parameters used in the system model are summarized in Table 2.

Model validation. The model is validated against measurements made on our
testbed system showing high accuracy - typically to within a 10% error. Mea-
surements and predictions are shown in Figure 3 for 7 sets of particle histories
per cycle (100, 500, 1000, 5000, 10000, 50000, and 100000) on a range of pro-
cessor counts (a strong-scaling analysis). The geometry is the same for all runs.
Note that for small Nph, the communication costs soon dominate the processing
time, resulting in poor scalability. For large Nph, the scalability is better up to
a higher processor count.

4 Performance Study of MCNP

In this section the model is used to explore the performance of MCNP on larger
configurations of current systems. It is also used to explore the possible improve-
ments resulting from refining the code to make use of reduction operations as
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Fig. 4. Expected cycle times on larger ES40 systems for strong (a) and weak (b) scaling.

suggested in Section 3.1. The model is further utilized to investigate the per-
formance of future systems assuming performance improvements in individual
sub-system characteristics such as latency, bandwidth, and processing speed.

Scaling behavior of larger systems. The MCNP performance model is used
to explore the expected performance on larger AlphaServer ES40 systems in
Figure 4 for both strong and weak scaling models. As the processor count
increases in the strong scaling mode, the amount of work per slave decreases
and hence communication costs soon become a significant percentage of the
overall run-time. In weak-scaling, as the processor count increases the amount
of computation per processor is constant and thus the overall run-time increases
more gradually due to increased communication costs. Overall it can be seen
that in a strong-scaling mode, MCNP scales up to 512 processors on the problem
being studied due to communication costs soon becoming significant. In weak-
scaling, the performance of MCNP is much better and actually scales up to 8192
processors.

Performance predictions on faster systems. The impact of system perfor-
mance improvements on the run-time of MCNP can also be quantified in advance
of such systems being available. Here we examine a number of what-if scenarios
by considering the performance of the communication and computation sub-
systems to be improved by a factor of 8 individually. The factor of 8 was chosen
to be indicative of what may happen to these sub-system performances over the
next 5 years.. The relative improvement over the existing ES40 system is shown
in Figure 5. Also included in Figure 5 is the relative performance improvement
that could be obtained if just the modifications to the code as described in
Section 3.1 above were implemented.

It can be seen from Figure 5 that an increase in computation capability has a
much greater impact on performance for small numbers of processors, but rapidly
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Fig. 5. Relative impact of improved computation and communication capabilities for
strong (a) and weak (b) scaling.

declines as the number of processors is increased. Similarly on larger processor
counts, the increase in communication capability will have a larger impact (due
to communication constituting a larger percentage of the execution time as the
number of processors increases).

5 Conclusion

In this work we have developed a detailed analytical performance model for
MCNP. The model includes the main code characteristics and separates out the
application and system characteristics. The model is based on a static analysis of
the application but is parameterized in terms of its dynamic behavior. Through
a validation process on a 32 node AlphaServer ES40 cluster, we have shown the
model to be accurate with a typical error of 10%.

The model has been used to explore a number of performance scenarios.
In a scalability analysis, the model was used to give expected performance on
larger ES40 systems. This analysis showed that in a weak-scaling mode the
application will scale to thousands of processors whereas in a strong-scaling
mode the application scales to only hundreds of processors.

The performance of MCNP was also examined for the case of modifying
the communication structure in the application to include the use of collective
reductions. This analysis indicated that the performance could be improved on
large processor counts if such modifications were implemented. In addition, the
performance of MCNP was examined on a number of hypothetical systems which
included faster computation or communication sub-systems. It was shown that
increases in computation speed have the greatest effect on smaller processor
counts, and increases in communication speed have greatest effect on larger
processor counts.



Through these analyses the benefits of developing a performance model of
an application have been illustrated. Once such a model has been validated it
can be used to predict performance on systems or configurations that cannot
be measured. The model has been used to analyze many scenarios in this work,
and will be used to explore the performance on future machines as they become
available. The model is part of an ongoing effort to model the ASCI workload and
complements existing models for deterministic particle transport on structured
and unstructured meshes and for adaptive mesh refinement applications.
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